NEUROLOGICAL DISORDERS:
MULTIPLE SCLEROSIS, GUILLAIN BARRE, PARKINSON’S DISEASE

For Advance given by:
Dr Susan Fralick-Ball, PsyD, MSN, RN, CH, CLNC
PsychMedEd 2012

MULTIPLE SCLEROSIS (MS)

- Chronic, progressive, demyelinating disease of the CNS
- Characterized by periods of remission and exacerbation
- Most Common neurological disease affecting young adults

MS: ETIOLOGY

- Idiopathic, etiology unknown
- Theories
 - Abnormality of Immune Regulation
 - Chronic Infection of CNS
 - Environmental factors in childhood
 - Genetic predisposition

MS: PATHOPHYSIOLOGY

- Plaques in the brain and spinal cord
 - Plaques range in size from 1-4 cm
 - More prevalent in white matter (myelin covered) and periventricular regions of brain stem (90%), optic nerves and chiasm, cerebellum, and cervical spinal cord region
 - Plaques slow speed and conduction of nerve impulses
 - Exacerbations and remissions believed to be controlled by some degree of stress (exacerbations) and immune response (remissions)
 - Newer research posits that stress does not CAUSE MS

MS: CLASSIFICATIONS

- Relapsing-Remitting
 - Clearly defined relapses
 - 85%-90% individuals with MS
- Primary Progressive
 - Slow, continuous worsening
 - 10% individuals with MS
- Secondary Progressive
 - Relapsing-remitting on onset, followed by minor remissions
 - 80% of individuals with relapsing-remitting MS
- Progressive-Relapsing
 - Progressive disease from onset
 - Least common
Cognitive Changes in MS
- As many as 40%-70% of MS patients experience symptoms of cognitive impairment, such as memory dysfunction and verbal fluency deficits.
- These conditions are often underdiagnosed, in part because it can be difficult to measure cognitive function in the clinical setting.
- New studies have determined that MS patients may find it harder to think clearly and remember things on warmer days of the year.
- Pain is often prevalent in MS and impact cognition
 - It is treated with meds and acceptance-type psychotherapies

MS: History
- **Family History of MS - ??**
- **Symptoms**
 - Visual disturbances (diplopia, nystagmus)
 - Emotional lability
 - Bowel, bladder, sexual dysfunction
 - Impaired coordination
 - Extremity weakness, numbness, aching
 - Speech changes (slurring, staccato)
 - Dizziness, vertigo
- **Aggravation of symptoms**
 - Heat
 - Exercise
 - Stress

MS: 2005, 2011 Revised McDonald MS Diagnostic Criteria
- The Poser and MacDonald/Polman criteria
- Base the diagnosis of MS on MRI dissemination in time and place
- Heavily base diagnosis on MRI findings
- The 2X2
 - 2 or more attacks and 2 or more lesions
- Now allowed to diagnose MS on first attack with MRI findings and symptoms
- No longer have to wait for new criteria to emerge

Multiple Sclerosis: Diagnostic Findings

Evoked Potential
- Measure time required to transmit electrical impulses in central regions of CNS
- Slowing of impulses is evidence of plaques
- Visual (85%), auditory (67%), and somatosensory (77%) evoked responses

MS: Interventions
- There is no cure for MS
- Medications are used to treat relapses and to modify the course of the disease
- Pharmacological interventions include, but are not limited to:
 - Relapse Management
 - Disease-Modifying Agents
 - Symptom Management
- Early treatment works best!
 - Interferon beta-1b is prolonging survival rate, especially when started early
MS: Disease-Modifying Agents

- **Immunomodulating disease-modifying agents:**
 - Interferon-beta-1a (brand ‘Avonex’)
 - Interferon-beta-1a (brand ‘Rebif’)
 - Interferon-beta-1b (brand ‘Betaserone’)
 - Non-interferon therapy (glatiramer/’Capaxone’)
 - Synthetic antineoplastic (mitoxantrone)
 - α4-integrin humanized antibody (Natalizumab “Tysabri”) is back on market primarily for treatment of Crohn’s disease. Caution: May cause brain infection progressive multifocal leukoencephalopathy (PML)

New Oral Drugs: Bad & Good

- The US Food and Drug Administration (FDA) says it won’t approve oral cladribine (Movectro, Merck Serono) for multiple sclerosis (MS) without more safety information due to cancer-like effects.
- Fingolimod (brand ‘Gilenya’) is a sphingosine-1-phosphate-receptor modulator that readily crosses the blood-brain barrier. Its proposed mechanism of action is preventing the egress of B- and T-cell lymphocytes from lymph nodes, thereby reducing the potential for autoimmune damage to the central nervous system.

MS: Disease-Modifying Agents

- **Immunosuppressive therapy**
 - Cyclophosphamide
 - Azathioprine
 - Methotrexate
 - Cladribine
 - Cyclosporin A

MS: Treatment

- **Exacerbation**
 - Methylprednisolone—initially IV to speed recovery
 - Adrenocorticotropic hormone (ACTH) as an alternative to steroids
- **Relapsing-Remitting**
 - Interferon results in fewer relapses and MRI lesions
- **Progressive (gradual deterioration)**
 - Monthly boluses of chemo agent and steroids stabilizes disease progression
 - IV boluses of cyclophosphamide and methylprednisolone
 - Low dose azathioprine and methotrexate

MS Symptom Management

- Fatigue (worse in afternoon)
 - Amantadine (side effect = depression)
- Depression (50%)
 - Amtriptyline
 - Screen for suicide
- Spasticity
 - Baclofen (GABA\textsubscript{b} agonist)

MS Symptom Management

- Bladder spasms: Anticholinergics
- Bowel dysfunction: Hydration, high fiber diet
- Neuralgia: carbamazepine usually combined with a tricyclic antidepressant
- Sexual dysfunction (90%): lubrication, sex therapy, vibrators, erectile dysfunction
MS: Treatment
- Other therapies
 - Physical Therapy – for restoration of strength and maintenance of function
 - Intermittent exercise found to be ideal treatment
 - Occupational Therapy – for energy conservation while performing ADLs, adaptive devices as needed
- Follow up: dependent on disease course – at least every 3-6 months
- Encourage attendance at support groups and wear a medical bracelet indicating MS

Guillain-Barré Syndrome (GBS)
- Acute form of polyneuritis
- Due to autoimmune process within peripheral nervous system
- Characterized by rapidly progressive, ascending, symmetrical motor weakness

Guillain-Barré Syndrome (GBS)
- Acute inflammatory demyelinating polyneuropathy (AIDP)
- Inflammation and destruction of myelin sheath
- Can be fatal if the diaphragm becomes involved or complications of immobility
- Most often caused by viral infection

GBS: Classifications
- Ascending GBS
 - Weakness and paraesthesia/dysaesthesia begins in the legs, ascends to trunk, arms, cranial nerves
- Pure-motor GBS
 - Mild form of ascending type
 - Retains sensory function without muscle pain

GBS: Classifications Continued
- Descending GBS
 - Weakness and paraesthesia/dysaesthesia begins in the innervated by the cranial nerves and descends to the trunk and extremities
 - Mild respiratory involvement in most patients
- Miller-Fisher Syndrome (rare)
 - Ataxia, ophthalmoplegia, areflexia, no sensory symptoms
 - Respiratory difficulty uncommon

GBS: Etiology
- Exact cause unknown
- Inflammatory autoimmune disease
- Precipitating factors
 - **Infection** 60-70% patients report a recent respiratory or GI infection, which could be viral (15% CMV) or bacterial 10-14 days prior to symptom onset
 - **Surgery** – 5-10% patients report recent surgery or epidural analgesia use
 - **Vaccination** – small percentage of patients report having had vaccination within 8 weeks of symptom onset (antirabies, swine influenza, oral polio)
GBS: PATHOPHYSIOLOGY
- Inflammation due to an autoimmune reaction; results in myelin destruction
 - Areas of focal infiltration by T-cell lymphocytes and macrophages in a segmental pattern throughout cranial nn, autonomic, motor and sensory pathways
 - Macrophages attack and progressively destroy myelin
 - Between nodes of Ranvier
 - Eventually blocks conduction of nerve impulses

GBS: MECHANISM
- Acute polyneuropathy
- Myelin sheath of motor and sensory nerves ingested and destroyed by macrophages
- Recovery possible if no destruction of CB, axon, and Schwann cells
 - CB & Schwann cells reproduce myelin
 - 85% full recovery

GBS: SYMPTOMS
- Reflexes will be severely diminished or absent
- Pins and needles extremity neuropathy
 - Early stages, less common
- Cranial nn involvement includes inability to swallow, chew, talk, or close eyes

GBS: PHYSICAL FINDINGS
- Cardiovascular
 - Autonomic dysfunction
 - Hypertension, hypotension, dysrhythmias
- Respiratory
 - Tachypnea, adventitious sounds due to aspiration, decreased vital capacity
- Gastrointestinal
 - Decreased bowel sounds, abdominal distention, constipation
- Genitourinary
 - Bladder distention, urinary retension
- Skin
 - diaphoresis

GBS: DIAGNOSTIC TESTS
- No specific tests
- LP w/ CSF studies
 - Increased protein (>45mg/dl) (IgG)
 - Absence of increased WBCs
 - Normal opening pressure
- Electromyelogram (EMG)
 - Lack of nerve stimulation
- Nerve Conduction Velocity (NCV)
 - Slow, demyelination

GBS: COURSE
- Acute Stage
 - Onset of symptoms, rapidly progresses
- Plateau Stage
 - Symptoms remain for few days – few weeks
- Recovery Stage
 - Slowly over weeks to months to 2 years
 - Remyelination and axonal regeneration
 - Varying degrees of muscle weakness, paresthesia, hyperreflexia, distal muscle atrophy, facial paralysis
GBS: Treatment

- Plasmapheresis
 - Removes damaging antibodies
 - 3-4 treatments, 1-2 days apart
 - Monitor calcium level, replace
 - May receive second set of treatments

- High-dose Immunoglobulin therapy (IVIg)
 - Blocks damaging antibodies
 - 1.2 mg/kg in divided doses over 2-5 days

- Corticosteroids
 - Weak evidence, ineffective
 - Increase muscle usage
 - 1 mg/kg daily, taper

- High-dose Immunoglobulin therapy (IVIg)
 - Blocks damaging antibodies
 - 1.2 mg/kg in divided doses over 2-5 days

- Corticosteroids
 - Weak evidence, ineffective
 - Increase muscle usage
 - 1 mg/kg daily, taper

GBS: Treatment continued

- Immunosuppressive Agents
 - Azathioprine: monitor bone marrow suppression, elevated liver function

- Anticoagulants
 - Heparin, low molecular weight heparin
 - Prevent DVT

- Antibiotic agents
 - Early treatment, erythromycin, campylobacter
 - Adrenocorticotropic hormone (ACTH)

GBS: Management

- Respiratory support
 - Hourly vital capacity check
 - > 1000 cc, otherwise intubation and vent
 - Check tidal volume, RR, pulse oximeter
 - Months of ventilatory support
 - Bacterial pneumonia
 - Pulmonary embolus

- CV support (autonomic dysfunction)
 - Tachycardia, dysrhythmias
 - Impaired hemodynamics

- Pain management
 - Acetaminophen, NSAIDs, antidepressants, opioids

- Bowel and bladder function
 - Fluids, high fiber diet

- Mobility
 - DVT prophylaxis
 - Impaired mobility
 - Joint contractures, pressure ulcers
 - Positioning, ROM
 - PT, OT, early rehab

GBS: Management continued

- Psychosocial support and counseling
 - Sudden onset of symptoms in relatively good health
 - Anxiety
 - Fear
 - Depression
 - Accurate information regarding prognosis and treatment, calm environment
 - Communication issues
 - Sleeping patterns
 - Financial issues
 - Empathy, compassion, sensitivity, keen listening, positive reinforcement
 - Educate family and include in patient care

- Physical Therapy
 - Maintains strength and flexibility
 - Reduce chance of contractures
 - Transfers
 - Gait and balance training
 - Assistive devices, braces, wheelchairs

- Occupational Therapy
 - Retraining ADLs
 - Manage and pace ADLs

GBS: PT & OT in Rehab
GBS: OUTCOMES
- 5% mortality
- 90% recover completely
- Some continue with weakness or abnormal sensation
- 20% permanent disability
- 60% ongoing fatigue
- 3% relapse

PARKINSON’S DISEASE (PD)
- Chronic and slowly progressive, degenerative condition resulting in impaired voluntary movement and loss of control of the autonomic nervous system
- Course may span >10 years
- Death usually results due to complications such as aspiration or other infections

PD: ETIOLOGY & INCIDENCE
- May be some etiologic correlations between parkinsonism and encephalitis, head trauma, cerebral ischemia, exposure to toxins, and long-term use of phenothiazines and amphetamines
- 1 million Americans have PD
- 1 in 100 people over 60
 - 5-10% people < 40
- Men slightly > women
- Mean age at onset 58-62
- 20-60% eventually develop cognitive decline

PD: PATHOPHYSIOLOGY
- Idiopathic condition resulting from a degeneration and depigmentation of the substantia nigra (basal ganglia)
 - Leads to deficiencies of dopamine (inhibitory transmitter)
 - Loss of dopamine thought to account for many of the hypotonic motor symptoms experienced
 - Presence of Lewy bodies in remaining nigral tissue
 - Found within neurons that produce dopamine
 - 50% nigral neurons degenerate to produce symptoms

PD: PHYSICAL FINDINGS
- Specific symptoms (TRAP)
 - (T) resting tremor of the hands, exaggerated by anxiety, absent during sleep, decreased during purposeful movement
 - (R) cogwheel rigidity (ratchet-like resistance during passive ROM)
 - (A) akinesia/bradykinesia: slowing of difficulty initiating movement
 - (P) Posture/gait disturbances: stooped position and poor balance leads to falls, shuffling gait
PD: PHYSICAL FINDINGS

- Muscle cramping, aching, stiffness
 - Dystonia (turning in of foot)
 - Mask-like facial expression
- Constipation, Urinary frequency, Stress incontinence
- Speech and swallowing difficulty
 - Voice may become softer in volume, monotonous
- Dementia: Progressive memory difficulty, recent occurs first followed by distant

PD MEDICATIONS

- Dopaminergics & dopa decarboxylase inhibitors – reduce rigidity, bradykinesia
 - Levodopa-carbidopa
 - Combo increases amount of levodopa that reaches brain
 - Regular, controlled-release, liquid
 - Give with meals
 - Side effects
 - Nausea, vomiting
 - Orthostatic hypotension
 - Dyskinesia (involuntary movements)
- Anticholinergics – reduce acetylcholine to balance lowered dopamine activity
 - Controls tremor; used for disabling tremor
 - Trihexyphenidyl (Artane)
 - Benztropine mesylate (Cogentin)
 - Diphenhydramine (Benadryl)
 - Biperiden (Akineton)
 - Contraindicated in elderly cognitively impaired
 - Side effects
 - Dry mouth
 - Constipation
 - Confusion
 - Impaired memory
 - Blurred vision
 - Tachycardia

PD MEDICATIONS

- Dopamine agonists – control motor fluctuations, balance
 - Mimic effects of dopamine, causes neurons to react
 - Bromocriptine (Parlodel)
 - Pramipexole (Mirapex)
 - Ropinirole (Requip)
 - Rotigotine (Neupro)
 - Transdermal patch Q daily: provides 24 hr medication
 - Pergolide mesylate (Pergolide) – no longer used due to heart valve disease
 - Side effects:
 - Compulsive behavior, drowsiness, confusion
 - Hallucinations, tremors
 - Severe allergic inflammatory reactions, difficulty breathing

PD MEDICATIONS

- MAO-B inhibitor – for motor fluctuations and to reduce the levodopa-carbidopa dose if possible
 - Monoamine oxidase B
 - Prevent breakdown of dopamine
 - Inhibits activity of enzyme MAO-B
 - Selegiline hydrochloride (Zelapar);
 - Psychomotor enhancement r/t methamphetamine metabolites of drug – headache, insomnia, nausea, sweating
 - Never give to patient taking MAOIs
 - Do not give with amitriptyline or sumatriptan
 - Rasagiline (Azilect) – irreversible MAO-B inhibitor
 - Phenylzine (Nardil)- MAOI; rapid onset
COMT inhibitors
- Help increase energy, ADL function and sleep, decrease muscle cramps
- Catechol-O-methyltransferase
 - Increase bioavailability of levodopa
 - Block enzyme that breaks down dopamine
 - Take in conjunction with dopaminergic
 - Tolcapone (Tasmar) – used less due to severe liver damage
 - Entacapone (Comptan) – plain or in combination drug with levodopa-carbidopa

Botox injections
- Helpful for dystonia, blepharospasm, torticollis, dysphonia relief

Antiviral
- Amantidine 100 mg BID or TID
 - Treats dyskinesia due to dopaminergic drugs
 - Side effects:
 - Edema
 - Lower extremity mottling

Thalamotomy
- Reduces tremor
- Destruction of tissue in thalamus
- One side of brain

Pallidotomy
- Reduces tremor, rigidity, bradykinesia
- Electric current destroys tissue in globus pallidus
- Both are irreversible

Deep Brain Stimulator (DBS)
- Control symptoms – rigidity, bradykinesia, tremor
- Decrease medications
- Transmit electrical impulses through wire in tiny electrodes in globus pallidus (Gpi), subthalamic nucleus (STN), ventral intermediate nucleus of thalamus (Vim)
- Poor patient selection
 - Poor response to levodopa, atypical PD, age > 75, presence of psychiatric disorders, DM, CAD, abnormal MRI, poor patient motivation
- Restart PD medications post op
- DBS not turned on until follow-up visit
- Turned on and off with magnet

Transplant surgery
- Experimental implantation of dopamine-producing cells into striatum
- Moderate effectiveness
- Patients < 60
- Stem cells to create dopamine-producing cells
Thanks for attending today’s seminar.
Please make certain to have your CE credit sheet checked by the Advance coordinator.